
1

Introduction to Database
Systems

CSE 444

Lecture #3
Jan 10 2001

2

Announcements

aSpecial Lecture
`At Sieg 134 on January 19th from 330-450PM
`Topic: Building SQL Applications
`Important For
⌧Programming Assignment
⌧Course Project

aForm Groups for Course Project NOW
aHomework Due in a week
aFinal: Check Schedule

3

SQL

Reading: Sec 5 (all subsections, except
5.10)

4

Selection and Projection

SELECT name, stockPrice
FROM Company
WHERE country=“USA” AND stockPrice > 50

Input schema: Company(sticker, name, country, stockPrice)
Output schema: R(name, stock price)

5

Removing Duplicates

Product(pid, name, maker, category, price)

SELECT DISTINCT category
FROM Product
WHERE price > 100

6

Simple Aggregation

Purchase(product, date, price, quantity)

Example 1: find total sales for the entire database

SELECT Sum(price * quantity)
FROM Purchase

Example 1’: find total sales of bagels

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

2

7

Grouping, Aggregation

Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

8

First compute the relation
(date > “9/1”) then group by product:

Product Date Price Quantity

Banana 10/19 0.52 17

Banana 10/22 0.52 7

Bagel 10/20 0.85 20

Bagel 10/21 0.85 15

9

Then, aggregate

Product TotalSales

Bagel $29.75

Banana $12.48

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product

10

Example

SELECT product, Sum(price * quantity) AS SumSales
Max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

For every product, what is the total sales and max quantity sold?

Product SumSales MaxQuantity

Banana $12.48 17

Bagel $29.75 20

11

Group By and Having

Purchase(product, date, price, quantity)

Example 2: find total sales after 9/1 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > “9/1”
GROUPBY product
HAVING Sum(quantity) > 10

Queries With GROUP BY and
HAVING

aThe target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
`The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

3

Conceptual Evaluation

aThe cross-product of relation-list is computed, tuples
that fail qualification are discarded, `unnecessary’
fields are deleted, as before.

aThe remaining tuples are partitioned into groups by
the value of attributes in grouping-list.

aThe group-qualification is then applied to eliminate
some groups.

aOne answer tuple is generated per qualifying group.

Find the age of the youngest sailor
with age 18, for each rating with at
least 2 such sailors

a Only S.rating and S.age are
mentioned in the SELECT, GROUP
BY or HAVING clauses; other
attributes `unnecessary’.

a 2nd column of result is
unnamed. (Use AS to name it.)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

Answer relation

≥

15

Joins

Product (pname, price, category, maker)
Purchase (buyer, seller, store, product)
Company (cname, stockPrice, country)
Person(per-name, phoneNumber, city)

Find names of people living in Seattle that bought gizmo
products, and the names of the stores they bought from

SELECT per-name, store
FROM Person, Purchase
WHERE per-name=buyer AND city=“Seattle”

AND product=“gizmo”

Conceptual Evaluation
Strategy
a Semantics of an SQL query defined in terms of the

following conceptual evaluation strategy:
`Compute the cross-product of relation-list.
`Discard resulting tuples if they fail qualifications.
`Delete attributes that are not in target-list.
`If DISTINCT is specified, eliminate duplicate rows.

aThis strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

17

Meaning (Semantics) of
SQL Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

4. Translation to Relational algebra:

Π a1,…,ak (σ Conditions (R1 x R2 x … x Rn))

Select-From-Where queries are precisely Select-Project-
Join

18

Meaning (Semantics) of
SQL Queries

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

1. Nested loops:
Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer U
{(a1,…,ak)}

return Answer

4

Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

aWe will use these
instances of the
Sailors and
Reserves
relations in our
examples.

Example of Conceptual
Evaluation

SELECT S.sname
FROM Sailors S1, Reserves R1
WHERE S1.sid=R1.sid AND R1.bid=103

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

A Note on Range Variables

aReally needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!OR

Find sailors who’ve reserved at
least one boat

aWould adding DISTINCT to this query
make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

23

SQL is Tricky!

SELECT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

Looking for R (S T)

But what happens if T is empty?

∩ ∪

Nested Queries

a A WHERE clause can itself contain an SQL query!
aTo find sailors who’ve not reserved #103, use NOT IN.
aTo understand semantics of nested queries, think of a

nested loops evaluation: For each Sailors tuple,
check the qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

5

Nested Queries with
Correlation

a EXISTS is another set comparison operator, like IN.
a If UNIQUE is used, and * is replaced by R.bid, finds sailors

with at most one reservation for boat #103. (UNIQUE checks
for duplicate tuples; * denotes all attributes. Why do we
have to replace * by R.bid?)

a Illustrates why, in general, subquery must be re-computed for
each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

More on Set-Comparison
Operators

aWe’ve already seen IN, EXISTS and UNIQUE.
Can also use NOT IN, NOT EXISTS and NOT
UNIQUE.
aAlso available: op SOME, op ALL

27

Example: Subqueries
Returning Relations

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker

AND Product.name IN
(SELECT product
FROM Purchase
WHERE buyer = “Joe Blow”);

Here the subquery returns a set of values

Find companies who manufacture products bought by Joe Blow.

28

Example: Subqueries
Returning Relations

SELECT Company.name
FROM Company, Product, Purchase
WHERE Company.name=maker

AND Product.name = product
AND buyer = “Joe Blow”

Equivalent to:

Is this query equivalent to the previous one ?

29

Example: Subqueries
Returning Relations

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=“Gizmo-Works”)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
s > ANY R
EXISTS R

30

Example: Conditions on
Tuples

SELECT Company.name
FROM Company, Product
WHERE Company.name=maker

AND (Product.name,price) IN
(SELECT product, price)
FROM Purchase
WHERE buyer = “Joe Blow”);

6

31

Example: Correlated
Queries

SELECT title
FROM Movie AS x
WHERE year < ANY

(SELECT year
FROM Movie
WHERE title = x.title);

Movie (title, year, director, length)
Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

32

Example: Complex
Correlated Query

Product (pname, price, category, maker, year)

aFind products (and their manufacturers) that are
more expensive than all products made by the
same manufacturer before 1972

SELECT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND

y.year < 1972);

33

Example: Removing
Duplicates

SELECT DISTINCT Company.name
FROM Company, Product
WHERE Company.name=maker

AND (Product.name,price) IN
(SELECT product, price)
FROM Purchase
WHERE buyer = “Joe Blow”);

34

Union, Intersection,
Difference
(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

Similarly, you can use INTERSECT and EXCEPT.
You must have the same attribute names (otherwise: rename).

Find sid’s of sailors who’ve reserved a red
or a green boat

a UNION: Can be used to
compute the union of
any two union-
compatible sets of
tuples (which are
themselves the result
of SQL queries).

aAlso available: EXCEPT
(What do we get if we
replace UNION by
EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND
R.bid=B.bid

AND B.color=‘green’ 36

Union All Etc.

(SELECT name
FROM Person
WHERE City=“Seattle”)

UNION ALL

(SELECT name
FROM Person, Purchase
WHERE buyer=name AND store=“The Bon”)

The UNION, INTERSECTION and EXCEPT operators
operate as sets, not bags.

7

37

Defining Views

Views are relations, except that they are not physically stored.

They are used mostly in order to simplify complex queries and
to define conceptually different views of the database to different
classes of users.

View: purchases of telephony products:

CREATE VIEW telephony-purchases AS
SELECT product, buyer, seller, store
FROM Purchase, Product
WHERE Purchase.product = Product.name

AND Product.category = “telephony” 38

A Different View

CREATE VIEW Seattle-view AS

SELECT buyer, seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer
We can later use the views:

SELECT name, store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “shoes”

What’s really happening when we query a view??

39

What Happens When We
Query a View ?

SELECT name, Seattle-view.store
FROM Seattle-view, Product
WHERE Seattle-view.product = Product.name AND

Product.category = “shoes”

SELECT name, Purchase.store
FROM Person, Purchase, Product
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer AND
Purchase.poduct = Product.name AND
Product.category = “shoes”

40

Null Values and Outerjoins

aIf x=Null then 4*(3-x)/7 is still NULL

aIf x=Null then x=“Joe” is UNKNOWN
aThree boolean values:
`FALSE = 0
`UNKNOWN = 0.5
`TRUE = 1

41

Null Values and Outerjoins

aC1 AND C2 = min(C1, C2)
aC1 OR C2 = max(C1, C2)
aNOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

Rule in SQL: include only tuples that yield TRUE
42

Null Values and Outerjoins

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some Persons are not included !

8

43

Null Values and Outerjoins

Can test for NULL explicitly:
`x IS NULL
`x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS
NULL

Now it includes all Persons
44

Null Values and Outerjoins

Explicit joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Same as:
SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

But Products that never sold will be lost !

45

Null Values and Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

46

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

-OneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

